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We study the convergence of plane wave expansion method (PWEM) while calculating the band structure of 
one-dimensional typical phononic crystals by taking the example of Euler-Bernoulli beam. The both algebraic formats of 
the conventional and improved PWEM (CPWEM and IPWEM) were derived from the dynamic differential equation. The 
convergence of the PWEM was analyzed through the low and high eigen-frequencies of highly symmetric points. The 
numerical experiment shows that the IPWEM has better convergence, which is very efficient to calculate the band 
structure of one-dimensional typical phononic crystal systems of large elastic mismatch in searching for large band gaps. 
 

(Received November 15, 2011; accepted February 20, 2012) 

 

Keywords: One-dimensional typical phononic crystals, Euler-Bernoulli beam, Plane wave expansion method, Convergence 

 

 

 
1. Introduction 
 

In recent years, phononic crystals (PCs) have 

received much attention which becomes a hot topic in 

mechanics, physics and material science [1, 2]. PC is an 

inspiration drawn from photonic crystals that made of 

different materials with periodic structure [3, 4]. 

Propagation of elastic waves in PCs with spatially 

modulated acoustic impedance is analogous to the 

behavior of light or electromagnetic waves in photonic 

crystals [5-7]. Owing to the particular band gap 

characteristics, PCs can be used to control the 

propagation of acoustic or elastic waves, and numerous 

potential engineering applications of the PCs can be 

apperceived, e.g., vibration isolation, soundproofing and 

noise reduction and acoustic functional devices (filter, 

waveguide and diode) [8, 9]. 

The properties of frequency band gaps in periodic 

materials have been studied intensively in theoretical 

predictions and experiments [2, 10]. On the theoretical 

side, plane wave expansion method (PWEM) [3, 4, 11, 

12], transfer matrix method (TMM) [13], and finite 

difference time domain method (FDTD) [14] are the 

most popular methods. 

Due to the simplicities of theoretical assumptions 

and the distinct physical meanings, PWEM is widely 

adopted to calculate the band structures of PCs and 

predict their band gaps. According to the conventional 

PWEM (CPWEM), periodic material parameters are 

expanded in Fourier series based on its lattice structure, 

and the governing dynamic differential equations are 

transformed to algebraic eigen-value equations system, 

by combining Bloch theorem. The band structure will be 

presented if the eigen-value system is solved in the case 

of that wave vector changes. 

Previous researches show that large contrast in 

physical properties of constituents is a key factor of large 

acoustic band gaps [2-4, 15], many researches have 

focused on designing PC materials for large band gaps 

[14-16]. The CPWEM works well in most of the studies, 

but it shows poor convergences on dealing with the 

system of large elastic mismatch because the Gibbs 

phenomenon becomes obvious at the material interface 

where the Fourier series do not converge uniformly [17]. 

In this paper, we presented the improved PWEM 

(IPWEM) to calculate the band structure of 

one-dimensional typical PCs based on CPWEM and 

Laurent’s inverse rule. The theoretical model is built by 

the combination of dynamic differential equation, Bloch 

theorem, and Fourier expansion. The advantages of 

convergence of the IPWEM over the CPWEM are 

verified through the interpretations of numerical 

experiment using a PC Euler-Bernoulli beam consisting 

of aluminum and epoxy. 

 
 
2. Conventional and improving plane wave  
  expansion method  
 

According to the dimensions of their periodicity, 

PCs can be classified as one-, two-, and 

three-dimensional (1D, 2D and 3D) PCs, and the 

aperiodic direction of the general 1D and 2D PCs is 

assumed infinite. However, some kinds of structures in 

engineering, e.g., beam and plate, don’t satisfy the 

assumption. These structures are called typical PC 

structures [18]. Fig. 1 shows a PC Euler-Bernoulli beam 

consisting n different kinds beams with periodic constant 

a, which is a 1D typical PC structure. 
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Fig. 1. PC Euler-Bernoulli beam with periodic material 

and geometric parameters: (a) PC Euler-Bernoulli 

beam with lattice constant a, (b) section of beam 1, (c)  

     section of beam 2, (d) section of beam n. 

 

The differential equation governing the flexural 

vibration of heterogeneous Euler-Bernoulli beam can be 

expressed as [19] 
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where w is the transverse displacement. =S in which  

is the mass density, and S is the sectional area. =EI is 

the flexural rigidity where E is the Young’s modulus and 

I is the second moment of inertia. Both of  and  are 

periodic functions of position variable x, so the general 

form can be given as  m x . 

Because of the periodicity of PC Euler-Bernoulli 

beam, the transverse displacement field, according to 

Bloch theorem, can be expressed as 

      , exp i ky x t kx t w x     (2) 

where k is the 1D wave vector limited in the first 

Brillouin zone, which is shown in Fig. 1.  and  are 

highly symmetric points.  is the circular frequency, and 

 kw x  is the periodic function with the same spatial 

periodicity of  m x  and can be expanded in Fourier 

series as 

 

 
 

Fig. 2. The first Brillouin zone of 1D lattice. 
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w r G x W  (3) 

where 
1G  is the 1D reciprocal lattice and 

1GW  is the 

corresponding Fourier coefficient. 

m(x) can be also expanded in Fourier series as 

    
2

2

2exp i G

G

m x G x M  (4) 

where 
2GM  is the corresponding Fourier coefficient of 

1D reciprocal lattice 
2G . 

We have the following eigenvalue equation by 

substituting Eqs. (2)-(4) into Eq. (1), 

   
3 1 1 3 1 1

1 1

2 2
2

1 3G G G G G G

G G

W k G k G W        (5) 

where 
3 1 2G G G  . Eq. (5) is an infinite order 

eigenvalue problem, so the Fourier series need to be 

truncated to finite items if we want to solve the equation 

numerically. Usually, finite reciprocal vectors near the 

origin are selected. The more reciprocal vectors we 

choose, the closer the numerical results get to the true 

value. When n reciprocal vectors are selected in half axis 

direction, 2n+1 reciprocal vectors are used. We can 

obtain a matrix equation of 2n+1 order from Eq. (5) 

written in the generalized eigenvalue problem as 

 2 PW QW  (6) 

where P and Q are both square matrices of 2n+1 order, 

and W is an array of 2n+1 order. The entries of P, Q and 

W can be expressed as 

    
3 1

i jij G G



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where 
 
1

j
G  and 

 
3

i
G  are the reciprocal vectors in the 

1G  and 
3G  reciprocal vector spaces with indices j and 

i, respectively. 

Wave vectors are picked from the first Brillouin zone 

which is the interval  -π ,πa a , and Eq. (6) is solved. 

We can obtain the relation curve between wave vectors k 

and eigen-frequencies  which is the band structure of 

PC Euler-Bernoulli beam. 
The most serious problem of the CPWEM is the 

slow convergence at the interface of materials [17]. 

Based on the theory of Fourier factorizing of product 

function, Cao et al discovered that it is inappropriate to 

calculate the Fourier coefficients of a product of two 

functions using Laurent’s rule [11]. Further study shows 

that the products of elastic parameters function of 

position and the components of strain tensor are 

piecewise smooth, bounded, periodic and continuous in 

1D PCs, because the products of them are the 

components of stress tensor. That fits the Laurent’s 

inverse rule [20], so the IPWEM is raised. By the 

IPWEM,  1 m x  is expanded in Fourier series and the 

inverse matrix is adopted. Therefore, ijP  and ijQ  can 

be rewritten as 

      
3 1

1

i jij G G
P 




  (11) 
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3. Numerical experiment and analysis 
 

It is important to note that the IPWEM, by the theory 

of Fourier factorizing of product function, has the 

advantage of fast convergence and high precision only if 

the product functions are continuous. In the case of 1D 

PCs, there is only one component of stress tensor at the 

interface, and it is continuous, so the convergence can be 

well improved and the precision is guaranteed. However, 

it is noticed that dynamic differential equation of 1D 

typical PCs is not given in the form of stresses, so the 

slow convergence may still exists if the IPWEM is 

applied. 

In order to study the convergence of the CPWEM 

and the IPWEM in calculation the 1D typical PCs, the 

band structures are calculated while varied numbers of 

plane wave are chosen (n=5,6,…,80), and the results are 

compared to that of the TMM. The TMM is a 

semi-analytical method, and it can give an implicit 

expression of corresponding wave vector for any given 

frequency. We consider the PC Euler-Bernoulli beam 

consisting of aluminum and epoxy. The material and 

geometric parameters are listed in Table. 1. 

 

Table. 1 Material and geometric parameters. 

 

 Density 
Young’s 

modulus 
Length 

Sectional 

width 

Sectional 

height 

 
 

(kg/m
3
) 

E 

(GPa) 

l 

(m) 

b 

(m) 

h 

(m) 

Aluminum 2730 77.6 0.05 0.01 0.005 

Epoxy 1180 4.35 0.02 0.01 0.01 

 

The first eight bands calculated by the CPWEM, the 

IPWEM and the TMM are shown in Fig. 3 when n=20, 

which is taking abscissa as wave vector k and ordinate as 

natural frequency f. As presented in Fig. 3, the results of 

the IPWEM agree well with that of the TMM; odd order 

bands by the CPWEM also agree well with the ones of 

the TMM and even order bands have a great deviation 

from the results of the TMM; however, even for the odd 

order band, the band by the IPWEM is closer to the 

results by the TMM than the ones by the CPWEM. 
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Fig. 3. Band structure of aluminum/epoxy PC Euler-Bernoulli 

beam by the CPWEM, the IPWEM and the TMM. 

Then we calculate the band structures by the CPWEM, 

the IPWEM and the TMM, and varied numbers of plane 

wave are chosen (n=5,6,…,80). The convergent trends of 

the fourth and the tenth eigen-frequencies at the highly 

symmetric points  and  are shown in Fig. 4. Being 

associated with Fig. 3, some conclusions can be drawn 

from Fig. 4 as follows: 
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Fig. 4. The convergent trends of different order 

eigen-frequencies calculated with varied plane waves of 

the highly symmetric points: (a) the third order, (b) the 

fourth order, (c) the seventh order, (d) the eighth order. 
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a. The eigen-frequencies calculated by the CPWEM 

and the IPWEM always converge to real value downward. 

It is different from 1D PCs and 2D typical PCs [11, 12]: 

the frequencies calculated by CPWEM converge to true 

value downward, while the ones calculated by the 

IPWEM converge to true value upward. 

b. The odd and even order eigen-frequencies 

calculated by the CPWEM show significantly different 

convergences: the odd order frequencies converge fast 

even closely to the TMM, while the even order 

frequencies converge very slowly. However, the 

convergence of the IPWEM is not sensitive to the orders 

of frequencies. 

c. The IPWEM converges faster than the CPWEM 

either in high or low frequencies, because appropriate 

formulation of Fourier coefficients of product of two 

functions is given, which uniformly preserves the 

continuity of the appropriate across the discontinuities of 

the elastic parameters function. 

Above all, the results show that the IPWEM has 

good convergence in both high and low frequencies band 

because the convergence of Fourier series at the interface 

is effectively improved. 

 

4. Conclusions 
 
In this paper, both algebraic eigenvalue equation 

systems of the CPWEM and the IPWEM are deduced 

from dynamic differential equation associated with Bloch 

theorem and Fourier expansion. The convergences of the 

CPWEM and the IPWEM in calculating the band 

structures of typical 1D PCs are studied by taking the 

example of flexural vibration of PC Euler-Bernoulli 

beam. The IPWEM shows much better convergence than 

CPWEM in calculation the band structure of large elastic 

mismatch 1D typical PCs, because appropriate 

formulation of Fourier series is given and the at the 

convergence at the interface of materials is effectively 

improved. The IPWEM is expected to be widely used to 

design elastic or acoustic devices and equipments in 

future researches. 
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